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Subsystem functionals in density-functional theory: Investigating the exchange energy per particle
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A viable way of extending the successful use of density-functional theory into studies of even more complex
systems than are addressed today has been suggested by Kohn and Metssohn and A. E. Mattsson,
Phys. Rev. Lett81, 3487(1998; A. E. Mattsson and W. Kohn, J. Chem. Phyid5 3441(2001], and is
further developed in this work. The scheme consists of dividing a system into subsystems and applying
different approximations for the unknowhut generglexchange-correlation energy functional to the different
subsystems. We discuss a basic requirement on approximative functionals used in this scheme; they must all
adhere to a single explicit choice of the exchange-correlation energy per particle. From a numerical study of a
model system with a cosine effective potential, the Mathieu gas, and one of its limiting cases, the harmonic
oscillator model, we show that the conventional definition of the exchange energy per particle cannot be
described by an analytical series expansion in the limit of slowly varying densities. This indicates that the
conventional definition is not suitable in the context of subsystem functionals. We suggest alternative defini-
tions and approaches to subsystem functionals for slowly varying densities and discuss the implications of our
findings on the future of functional development.
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l. INTRODUCTION with n(r), integrates to zero over the whole system. This is
_ _ an important property that we explore in this paper.
In denSIty-funCtlonaI theOFy(DFT) the total electron en- A suitable approxima’[ion of some choice Q(fc(r,[n]) is

ergy E is written as a formally exact functional of a given needed to use KS DFT in calculations. One such approxima-
(arbitrary ground-state electron density. The total electrontye functional put forward in the earliest works of DFT was
energy for a system with an external potentigf) is then e |ocal-density approximatidnLDA). It was aimed at sys-
found as the minimum ok, occurring for the true ground- o mg with very slowly varying electron densities, but was
state electron density(r) of the system. The Kohn-Sham o3 raply successful for wider use. LDA sets in every
(KS) formulatior? of DFT casts the search for this minimum space point, with densityn(r), equal toE, per electron of

into a self—consstenqy cglculatlon qf a proble_m of nonmter-a system with a constanty (a uniform electron gachosen
acting electrons moving in an effective potential(r). The such that the density of the uniform system equls). In
effective potential has been constructed to make the free- y y q '

electron density of the resulting free-electron orbitals,Kige this way LDA uses as input only the local value of the den-

. . LDA i
electron orbitalsy,(r), give the soughn(r). In a spin un-  Sity and can be written ag,;"(n(r)). Newer functionals,
polarized system, generalized gradient approximation€GA's), use, apart

from the local value of the density, also the first-order den-
sity derivative (the gradient €S>A(n(r),|Vn(r)|). Further
functional development such as meta-GGA's, use additional
parameters not always trivially related to the density, e.g.,
kinetic energy densities.

The successively refined approximations gf(r;[n])
escribed above all take the slowly varying density as their
starting points. The aim has been to create a single universal
functional useful for all kinds of systems, but the resulting
functionals tend to fail in the parts of the system where the
density is far from homogeneous, e.g., at surfacés con-

trast to this practice of developing universal functionals,
Exc=f n(r)e.(r;[n])dr. (2 Kohn and Mattssdh(KM) worked towards a functional spe-
cifically designed to handle the edge part of a system. They
This implicit definition of e, is not unambiguous. All trans- suggested that this functional could be used together with
formations preserving the value of the total integral yieldanother functional taking care of the interior region of the
possible choices of,.. Equivalently expressed, two correct system. A more generalized idea of using different function-
€, are equal apart from an additive function that, multipliedals in different regions of a system is illustrated in Fig. 1.

n(r)=22 |¢,(r)|? (1)

(where the sum is taken over all occupied orbjtals

Within KS DFT the total electron energy functioral, is
divided into classical contributions and a remaining part, thed
exchange correlation energy,E In order to decomposg, .
into local contributions, thexchange correlation energy per
particle e, is defined as a density functional which gives the
total exchange correlation energy as
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Original Kohn and Generalized idea density variation. The investigation is based on the Mathieu

Mattsson approach gas(MG) model, a noninteracting electron system that mod-

Edge T 7 els the KS orbitals of an effective potential with a cosine in

R, w * g | one of the three dimensions. The MG is presented in detall,

P~ ! ol s Rs as its properties are important for the interpretation and dis-

{ Interior " 2 - —\\ cussion of our results. It shows a rudimentary energy-band
\ Ry § R structure and its param.eter space range from the free-electron

1 (FE) gas to a harmonic oscillatdHO) system. From nu-
L ] merical calculations of the MG we show that the conven-

tional choice of the exchange energy per particle has a
FIG. 1. The. gengrahzed 'de"’? of dividing a system into sub nonanalytical behavior in the limit of slowly varying densi-
systems, applying different functionals to the different parts. The,. . . . .

. ties, and thus this choice cannot be described by an ordinary
left figure refers to the approach presented by Kohn and Mattsson i

Ref. 6 Fanalytica} expansion. The behavior indicates that the con-

ventional definition of the exchange energy per particle is not
Functionals used in this way must all adhere to a singlé® good choice for the derivation of subsystem functionals.

explicit choice of the exchange-correlation energy per par_Our results also raise concerns for the inclusion of Laplacian
ticle. This is an important requirement that is discussed if€"MS in functionals outside the scheme of subsystem func-
this paper. tionals. The discovered nonanalyticity is argued from exten-
KM introduced theedge electron gaas a suitable starting  SIV€ numerical data for the MG. This presented data might
point for a functional to use in the edgelike part of a system@IS0 be useful outside of our present work for derivation and
The simplest possible model of the edge electron gas, th&Sting of exchange functionals. _ _
Airy gas has a linear effective potential and features wave [N S€c. Il, we explain and explore the basic requirement
functions transitioning from oscillatory to vanishing. A func- that suitable subsystem functionals in a divided system
tional based on the Airy gas does not relate the density in thécheéme must all adhere to a single explicit choice of the
edge subsystem to a slowly varying density, but is inStea@xchange-c':orrelatlon energy per particle. This is expllcr[.ly
based on other assumptions valid only in an appropriate rediscussed in the context of the exchange energy per particle
gion near an edge. Within this region of validity an Airy gas N @ slowly varying system. In Sec. Ill, the MG is thoroughly
based functional should outperform functionals based on thBresented and its HO limit is recognized as a valuable model

homogeneous electron gas, but may not be a suitable agYStem in its own right. In Sec. IV the computed density,
proximation in the bulk part or interior of a system. density Laplacian, and exchange energy per particle are ana-

In a related effort Vitot al. have developed a functional, 'YZed in terms of deviations from their uniform electron gas
the local Airy gas(LAG).” Roughly, it corresponds to using values, and finite-size oscnlatlons_ prese_znt in the HO-|Ik_e part
the Airy gas exchange energy per particle and the LDA corof the MG parameter space are mvestlga_lted. The deviations
relation energy per particle in the edge region, while usindrom the uniform gas values for the density and the Laplac-
LDA exchange and correlation energies per particle in thé@n aré shown to behave as expected, but the computed de-

interior region. LAG gives mixed results for two reasons.Viations from the uniform electron gas value for the ex-
First, the LDA correlation functional used in the edge regionchange energy per particle imply that the conventional
is not compatibl® with the Airy gas exchange functional. definition of the exchange energy per particle must be mod-
Second, the use of LDA in the interior region is, in manyeled by an nonanalytical function of the Laplacian. In Sec. V

cases, inadequate. An Airy gas based correlation functiond{!® numerical precision of our data is validated. Finally, in

and an improved interior region functional are needed to>€C- VI, our findings are summarized and discussed, with
improve on the LAG. comments on the future development of subsystem

The uniform electron gas and the edge electron gas arg/nctionals.
not the only interesting starting points for functionals. Other
alternatives should be used to develop functionals for a large Il. EXCHANGE ENERGIES PER PARTICLE

variety of subsystem classes. Such functionals can either be 1he pasic idea explored in this work is to divide the inte-
carefully combined by computational scientists targetinggr‘,mOn over the whole system in E€®) into suitable parts
some specific system, or be composed into more general,y apply different approximations of the exchange-
functionals_applicable Fo a general §et of problems, such asyrelation energy per particle,(r,[n]) to each part. Ap-
systems with electrgnlc ed_ges, whlc_h was the aim of theproximations ofe, (r,[n]), which can be applied to such a
original work of KM.> Functionals derived from alternative ;i ided system, are referred to asbsystem functionalén

starting points have already been created, for example ffiq section we will discuss requirements a subsystem func-
Luttinger liquid systems. i

. . . ]Jonal must satisfy.
In addition to the general discussions about the use of A this point we are only concerned with the exchange

functionals in subsystems, this work also addresses the degnripytion to the exchange-correlation energy per particle.

velopment of a functional suitable for the interior region of a1 exchange and correlation terms are separated in the
system, where the density is slowly varying. We determine if

L ) ) usual wal
a specific(the conventionalchoice of the exchange energy y
per particle can be expressed as a power expansion in the €xc= ExT €. 3
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The freedom of choice of,., as explained in connection to been used in the derivation of modern nonempirical GGAs as
Eq. (2), also makes, nonunique. Similarly as fok,., all  the limit of low-density variation, and has led to very useful
choices ofe, must integrate, multiplied with the electron functionals**°

density, to the same valughe total exchange enerdy, ; In addition to the dimensionless gradient term, there is
Ref. 10 presents several definitionsEf and discusses how another term that should be included in a general expansion.
they relate to different choices ef). Let €/" be the con-  This term is proportional to thdimensionless Laplacian
ventional choice ofe,, which was also used for the Airy

gas® There exists an exact relatidrbetween this exchange v2n(r)
energy per particle and the KS orbitals. Using ftinst-order = 2372235 )
spinless density matrig;(r;r') and theinverse radius of the (3757 n>(r)

exchange hofe(inxh), R, *, the relation is expressed in cgs | the following it is explained why this term can be ne-

11)

units as glected in GEA and why it is not appropriate to neglect it in
-_ S the present context of different functionals in different parts
e =—€e’R, ()2, @ of a system.
By Green’s formula
Ny(r;r’)
R ! =——f i /
x (1) Ir—r’| a ® an vn 1|vn? YL ALE
fvn ﬁ_g ns3 av= ésn f7_§dS_O' (12
o 1|p1(r;|”)|2 6
L o) ®)  Wwherean/d¢ is the derivative of the density in the direction

of the outward pointing normal to the surfa8enclosing the
volumeV. Equation(12), showing one choice of a function
pa(r;r =22 g ("), (7)  integrating to zero, can be added to the exchange part of Eq.
g (2). Adding the integrand of Eq12), multiplied by a factor

where n,(r;r’) is the conventional exchange hole densityProportional tob, to the GEA, Eq.(9), the expansion of all

ande is the electronic charge. possible analytical exchange energies per particle becomes
A. Systems with slowly varying densities e (r:;[n)= E)IZDA(n(r)) 1+ a3 sz+bq+ . }
For slowly varying densities, the exchange part of LDA is (13)

the most straightforward approximation deh(r;[n]). The
LDA expression is obtained by inserting KS orbitals for awhere the surface term always vanishes in practical calcula-
constant effective potentidpblane wavegin Egs. (4)—(7),  tions. In a finite system the integration surface is placed far
giving a constant,", which is parametrized in the uniform outside the system, where the normal derivative of the den-
electron density to give the familiar expression sity is very small. Furthermore, the integrands at opposite
sides of the surface cancel due to the opposite sign of the
directional derivatives of the density. In a periodic system the
integrands on opposite sides of the cell also cancel, since
their normals are in opposite directions. Finally, in a divided
An improvement to LDA exchange, proposed in the ear-system, any surface element on the surfaces enclosing the
liest works on DFE was to use gradient expansions. Thedifferent parts of the system have another surface element
traditional gradient approximation approach results in thewith opposite sign that can cancélthe constant b is the
second-order gradient expansion approximati@EA), same for the different functionals usédence, as long as the
same functional is used in the whole system, the valule of
10 can be arbitrary. It is traditionally set to zero, motivating that
e (n(r),|Vn(n)))= kaA(n(r))( 1+ 8_132)’ (9 GGAs need only depend on the gradient and not on the La-
placian. In a divided system, however, all subsystem func-

A (n(r)= —eZ%[?mzn(r)]m. (8)

wheres is thedimensionless gradient tionals used must have the same valub.dfnfortunately, an
explicit definition of the exchange energy per particle result-
|Vn(r)]| ing in b=0 is not known. In the choice between searching

(10 for such a definition or establishing the valuelothat cor-
responds to the definition in Eggl)—(7) we here choose the

The correct coefficient, 10/81, of the dimensionless gradienfatter.

swas finally established by Kleinman and L& 1988. In Turning to our choice of exchange energy per particle, the

a truly slowly varying system, the GEA performs well, but €xpansion takes the form

outside of its area of formal validity the GEA is found to be _

unsatisfactory when applied in computations. Often it is less  €™(r;[n])=e:PA(n(r))(1+a™"s?+b™ g+ - - .),

accurate than the LDA® However, GEA has successfully (14

o 2(3772)1/3”4/3(” )
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where the gradient coefficiet™" is expected to be 10/81
—b™/3, and the Laplacian coefficiett™" is to be deter-
mined. Since the gradient coefficient is fully determined by
the Laplacian coefficient we will only be concerned with the
Laplacian coefficient.

B. General systems

Although only slowly varying systems are explicitly ex-
amined in this work, we comment on the extension of sub-
system functionals to general systems. Above we discussed
the requirement that all subsystem exchange functionals ap-
plied to one slowly varying system must have the same value

of the Laplacian coefficienb. The same arguments can be g 2. The effective potential of the Mathieu GA4G). The
repeated for all terms in the Taylor expansion, leading to thjot marks a minimum point, i.e., one of the points where the di-
conclusion that different subsystem exchange functionals agnensionless gradient vanishes. For amplitudesrich larger than
plied to a general system must all be based on the samfie chemical potentigk, the MG approaches the harmonic oscilla-
explicit definition of the exchange energy per particle. Thistor (HO) model, whose effective potential is shown as a fat broken
point was illustrated by assuming the exchange energy peine. The opposite limit is the free-electr¢RE) gas. The limiting
particle to be analytic. However, it is obvious that analyticity case between the HO domain and the FE domain arises
is not required. Hence, to be a subsystem functional, a fulivhen 2v= .

exchange-correlation functional must be based on a specific

set of definitions. When the integration in E@) is divided  slowly varying limit where LDA is appropriate. We seek in-
into integrations over subsystems, new nonvanishing termformation about the exchange functional from exploration of

0 mp

must not be introduced. yet another model system, the Mathieu Gi&S). The MG
is the two-parameter model in which the KS effective poten-
. MATHIEU GAS tial is described byFig. 2
The development of exchange-correlation energy func- Ver(Z) =\ —\ cOEp2). (15)

tionals has predominately been guided by studies of one

model system, the uniform electron gas. For example, thghere is the amplitude, ang is the wave vector of the
Monte Carlo calculation by Ceperly and Ald@of the total  effective potential. Since we are mainly interested in the La-
energy of uniform gases with different densities is the foun'placian coefficienb™ in Eq. (14), we have choser=0 to
dation of most correlation functionals in use today, and thg,e 4t g local minimum in the symmetric effective potential.
exchange energy of the uniform electron gas is the basis fofhe gimensionless gradient in Eq.0) is always zero at this
the LDA exchange energy functiofaDther model systems, point, thus eliminating the gradient term.

like the Airy gas and the exponential modH,haV(_e been The dimensionless parameters of this family of potentials
studied to expand the understanding of strongly inhomoge-

= D= 2 _ 2;
neous systems such as surfaces. Sahni and co-workers u%re@% r);li vt; ’l\f ea\?gcrt)or%ﬁ‘(zkghuiz‘(')rvr\;hglrgtlz(ggn 2;;1";]/ iéhefn'?zzl
model systems, like the step, linear, and finite-linear potential : ) . . g .
otential u. In this work kg ,, is considered to be indepen-

models, in studies of surfac&’. gent of position
One motivation for using model systems is the unified A Ft) o .'I o the MG h v b wdied b
development of exchange and correlation functionals. LD,ﬁ\I system sirmilar to the as recently been studied by

performs so well since the LDA exchange and correlation ekqveeet al: using Monte Carlo method.sl, but with em-
functionals are “compatible? The error in the LDA ex- phasis on strongly inhomogeneous densities. As early as

change is counterbalanced by the error in the LDA correla 222 Slater studied a potential with cosines in all three

tion, as the combination gives the energy in the uniformdirectipns?3 Some of his results are relevant in our context

electron gas. This is in contrast to how GGA's are usuallyand will be repeated here.

developed, where the exchange and correlation functionals

are constructed separately, as accurately as possible, and A. Exact solution of the MG

little attention is paid to the combined quantity. It is well Following the general method outlined in Ref. 6,

known that even though the separate GGA exchange and

correlation energies for the jellium surface are much more

accurate that the LDA quantities, th_e combined quan_tity is b (X,Yy,2)= iei(klirkzy)(P (2) (16)

actually more accurate in LDA than in GG/Ref. 19 [this Al2 K

is, however, not tru@ for the PKZB meta-GGARef. 21)].

By creating functionals from model systems it is possible tois inserted into the KS equationg v=(k;,kz,7); kiL;

obtain compatible exchange and correlation. =2mm; (i=1,2, m; integey, and A=L,L, the cross-
Our aim is to go beyond LDA, basing our study on asectional areh The solutions to the resulting equation for

model system suitable for interior regions, containing thee,(2),
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h? d?

T omgZ 17

+Uef‘f(z) 1](2):0:

with vef(z) from Eq. (15), can be written in terms of
Mathieu functionsF,(x). These functions are described in
Ref. 24. We use the Bloch, or Floquet, form:

1 _
¢,(2)= TFW(PZ)
3

(18)

1 R e
——explinpz) > cexpizkpz),
k=—o

Ly

WherenHkF,uLg,:qumg (m integey, L5 thezlength of the
system,z=kg ,z, and the parameter is the characteristic
exponent. The coefficients), are determined from

A A
(2k+9)’ch— = 5 (Ch 2T Chi2)= a( 7, —)Czw
2p? 2p®

(19

and are normalized witlt;__,|cZ|?=1. These equations

also give the eigenvaluex7, )\/(2p2)) used in the energy.
The energy of an eigenstate of the MG is

ﬁZ
ev=%(kf+ k3)+€,=<u,

r)
77!252'

Equation(19) can be written in an infinite symmetric ma-
trix form. Matrix theory gives that all values of
a(n,N(2p?)) are real and bounded from below. The sam
system of equations is recovered while shiftindpy an even
integer. The valuea(n,\/(2p?)) also has a+ 7 symmetry.
The index» have infinite range;- < n<<w, and with each

(20

where

(21)

€ .
—=\+pa
o

e
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FIG. 3. The parameter space of the MG. Parameters in the
shaded areas correspond to a chemical potential in one of the bands,
while parameters in the light areas correspond to a chemical poten-
tial in the free-electron continuum between bands. For combina-
tions of parameters on the full lines the chemical potential is at a
band edge. Thick lines correspond to the bottom of bands, while
thin lines correspond to the top of bands. For the sake of clarity
lines near the origin are not shown. The short-dashed line is the
dividing line between the HO domain and the FE domaiee text
and corresponds to a chemical potential at the maximum of the
effective potential(Fig. 2). For combinations of parameters on a
guadratic line the energy-band structure is constse¢ Fig. 4 and
text) apart from scaling. From right to left the long-dashed qua-

dratic lines correspond tv/p2=0.2, 0.4, 0.8, 20, 40, and 100.

B. Parameter space

The parameter space of the MG contains two well studied
limiting cases; the weakly perturbed periodic potenftak
free-electron(FE) gag and the harmonic oscillato(rHO)

The two dimensionless parameters of the MG xarand p,
but in discussions of certain properties there are dimension-
less combinations that work better, most notably the combi-

nationsy/2\p2, in the HO limit, and\/p?, when discussing

value one energy and one wave function are associated. THge energy-band structure. In order to emphasize the two
is the extended Brillouin-zone scheme. An alternative is tglimensionality of the parameter space we do not introduce
setp=even integet /, —1<¢<1, and associate an infinite Ne€w notations for these combinations. In the next sections
number of different wave functions and energies with eactthe different combinations and their meaning are discussed.
value of{. This is the reduced Brillouin-zone scheme. Note,We have chosen to use a parameter space spanngdbg
in the extendeq scheme, thatinteger will _segmingly pro- ‘/2)\—p2 as is shown in Fig. 3.
duce two solutions as the& » symmetry coincides with the
even-integer shift symmetry. The issue is resolved by noting
that one of the solutions is associated with the=
— |integet and the other withy=|integet. This is further
S)lzcussed in association with the energy-band structure of th1ehe vector @kp uZ (whereZ is a unit vector in the direc-
Both the Mathieu functiongin their real forms, see Ap- tion) is the reuprocal lattice vector. Alk-space vectors,
pendix B anda(#,Q) are available in numerical computer (K1.K2,7Pkeu), with a magnitude of the component being
software(e.g., MATHEMATICA ), making it easy to reproduce a multiple ofpk,: u (i.e., with integern) lie on Bragg planes.
most of Slaters results. For a detailed dlscussmn of the weak periodic potential see

1. Periodic potential and p

The parametep describes the periodicity of the potential.
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Ref. 25. In the parameter space shown in Fig. 3, lines with C. Energy-band structure and A/p?
constantp are parallel to the vertical axis. Due to the uniform character of the effective potential in
B thex andy directions, the MG has a continuous energy spec-
2. FE gas limit andA trum. [Only the case where the linear dimensiohs, (i

— ) ] =1,2, and 3), of the system are infinite, i.& space is
As A\—0, the system of equations in EQL9) decouples  gense, is considerddThe density of states at the chemical
and potential only depends on the energy-band structure irzthe
direction ink space, that is, on the structure &f, since for
1 . any e,<u, there is always a free-electron energy addition
¢,(2)= ——=expinpz), (22 that brings the total energy to the chemical potential accord-
\/L—3 ing to Eq.(20). However, the MG does exhibit a rudimentary
band structure due to the Bragg planes inzfikrection ofk
€ space. The characteristic exponenplays the role of a di-
;= np°. (23 mensionless scaled wave vector. Energies in the first band
are given by 6<|»|<1, energies in the second band by 1
- = . <|#n|<2, and so on. Note, however, that there are never any
Bly substitutingks= ”pk':’.“’ (tjhe plane waves of the uniform band gaps. The chemical potential can be placed in the free-
eec.tron ga.ls are recognized. ) __electron continuum between two bands. In Sec. IV it is
Lines with constanh are straight and start at the origin, shown that this band structure influences the quantities cal-
like the short-dashed lina=1/2, in the parameter space culated for the MG.

shown in Fig 3. The horizontal axia=0, is the FE gasor Recall thatkg , is not Fhe magnitude of t_he Fermi wave
uniform electron gaslimit. vector of a MG system with chemical potentja) but that of
the Fermi wave vector of a uniform electron gas with chemi-
— cal potentialu. The Fermi surface for the general MG sys-
3. HO and V2Ap? P K g Y

tem is determined by thk vectors fulfilling e,=u in Eq.
For A\=\/u—x (see dashed line in Fig, 2he occupied (20). i )
energy levels are well described by a harmonic oscillator, The energy in Eq(21) can be scaled in two ways, each
The cosine potential can be expanded arozn@® to lowest ~ PPropriate for one of the limiting cases:
order, 1 y) Np2—0

€ 2
77,2—52 — 7 (27)

L&
Ap? p? M
Verf(2) = TZZ, (24 and

r+
= — a
p2

1 €

S

giving the HO model. —
The discrete energy levels in tizadirection ink space of \/2)\_p2 M

this system are proportional tv‘Z)\_pZ, |12 52 12 \ Wi
=(—) +(—) a( n,t) — (2n+1),

2p? 2\, 2p?

€, —

;n=\/2)\p2(2n+ 1). (25)
(28)
The KS orbitals are wheren is the integer nearest below|.

The FE gas limit is obtained when/p?—0. For FE like
ke o /—2)\—2)1/2 12 spectra, scaling according to E&7) is appropriate. The HO
gon(z):(u) H,((V2\p?)Y%Z) limit is when \/p?— o and, for HO-like spectra, scaling ac-
Jm2™n! cording to Eq.(28) is used. In Fig. 4 we show four scaled
_ energy-band structures.
X exp(—[(V2rp?)Y?z]?12), (26) Apart from scaling, the energy spectra are the same for
arameters related by constarip? [see Eqs(27) and(28)].
whereH ,(x) are Hermite polynomiat§ andn=0, 1, 2, . . . . P Y P astzn (29

i P oy 02
The vertical axis in the parameter space in Fig. 3 is the Hdn Fig. 3 (the parameter space spannedband V2Ap%),

- . . — . long-dashed lines represextp?=0.2, 0.4, 0.8, 20, 40, and
2 - ——
Izlmor:tt;n:)(illsnes with constant/2\p“ are parallel to the hori 100. Thex axis corresponds to the FE gas limit/p?=0,

and they axis represents the HO modgll,az—»oo. Note that

4. Curvature andhp? N p? is independent of the chemical potential Fixing the
chemical potential in the energy-band structure selects a spe-

The dimensionless Laplaciapin Eq. (11) of the mini- cific point on a line with constarf/ﬁz, and thereby sets the

mum (black dot in Fig. 2 is, to first order, proportional to the scale of the energy-band structure.
curvature there. Thedimensionless curvature is propor- In Fig. 3 the full lines show choices of parameters for
tional to Ap?, as is seen from Ed24). which the chemical potential is placed on an energy level/on
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where, if u is inside az-dimension energy banalr,,,1 is the

lowest energy in this band. ji is not inside an energy band,
€, is the lowest energy in the band which contains the

0 0 z-dimension energy state with highest energy.. Further-
) b) more, €, is the lowest possible energy of aldimension

%0 30 energy states within bands that only contain energigs.
By constructionn; and 7, are integer.

The parameterr describes the position of the chemical
20 0 potential relative to the lower band edges, that is, the lowest
energies of the energy bands in thelimensional energy
10 10 band structure. The parameter differs from # in that it
indexes values of the chemical potential both within and be-
tween the energy bands in tkelimension, making it useful
throughout the parameter space of the MG. Integéiower
band edgesare shown as thick lines in Fig. 3.

In the pure HO model#,| approaches the index of the

-1-05 05 1 ¢ -1-05 05 1

1 € 1 €
37 7; 77 7{ highest discrete energy level with energye. Thus it is easy
P P to retrieve the(integey value of this highest index by trun-
14 cating thea parameter. Furthermore, for the HO model and
o 10 3 P the FE limit it is straightforward to express tleparameter
L in N andp (where|x] is the highest integesx):
8 10
~_1 S 1 1
—’/ﬁ\ o= _2_5, (30)
6_ 2V2\p
—_— L B
I 4 _ 1p?+N(N+1) a1
§ 2 GFETTON+1 o (3D
-1-05 I 05 i¢ -1-05 " 05 it A similar explicit expression can not be constructed for the

general MG case. After inserting E(R1) in Eqg. (29) the
___FIG. 4. The energy band structure of selected MG models:  gypression cannot be further simplified. In addition, when
Mp?=0, the FE limit,(b) \/p?=0.8, (¢) M/p?=20, and(d) NM/p*  ysing Eq.(21) for energies of band edgése., integery, as
—, the HO limit. The reduced index(—1<¢<1) isrelated to 5 the case hejeextra care must be taken not to confuse the
(= <n<x) by n=even integef {. lowest energy in a band with the highest energy in the band
below, corresponding to the two different signs of the integer
a band edge. The energy levels of the HO broaden into eny. For noninteger; both signs give identical energies.
ergy bands as the potential becomes weaker and thereby al-
lows for tunneling between neighboring wells. The short- IV. DENSITY, DENSITY LAPLACIAN AND IRXH
dashed line with\ =1/2 marks where the chemical potential EXCHANGE ENERGY PER PARTICLE IN THE MG
is equal to the maximum of the effective potentis¢e Fig. . . .
2). This line separates HO-like and FE-like systems. In this section we will use the framework of the MG
I . — . developed above to examine a number of DFT quantities.
Within a fixed energy structur@vhere\/p© is constanta

. ) . . The primary purpose of this study is to investigate the pro-
FE-like state is always reached when the chemical potenti d ;
is raised well above the effective potentiale., going to- osed exchange energy per particle expansion of(E4).

o . ) i } The presentation will be kept on a detailed part by part level,

wards the origin on a line with a constantp? and passing which is needed to show the true origin of the odd behavior

the short-dashed = 1/2 ling). This is seen in Fig. &). that is found. A higher level summary and discussion of the
The slowly varying limit is at the origin. In this work results is deferred to Sec. VI.

paths with constant/p? are followed towards the origin, but ~ Infinite systems are considereld;,L,,L3;—, and thek

any path towards the origin is equally valid. vectorsk,,k,, and#, are continuous variables. The FE limit
The position of the chemical potential relative to the dif- is solved by inserting the plane wave KS orbitals, E2p)

ferent energy levels, is important, and a parameter for this and Eq.(16), into the definition of the density, Eq1), and

property is needed. We choose the definition the definition of the exchange energy per particle, E4s-
(7). The well known results are

K€ l%u
a=———+|mnl, (29) ny(N=—35, (32)
3w

€9, €,
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0y, (0)

3k
22 Fu (33) -y

47

- D/AP)

eiin=-e

Using Egs.(1) and (4)—(7) we calculate the densities
nym(r) and ny(r) and the exchange energies per particle
el[,",?](r) and e;[f‘,ﬁ‘(r) for the MG and the HO, respectively.
From the calculated densities, density Laplacians and gradi-
ents are obtained numerically. Details on numerical methods

and calculational schemes are presented in the appendixes.

A. Analyzing the results: Expanding around the uniform
electron gas

For clarity parameters directly related to the MG are used
in the analysis and, unless otherwise statedzth® point is
considered. Instead of relating the calculated exchange en-
ergy per particlee™", to the LDA values as in Ed14) (i.e.,
relate it to the exchange energy of a uniform electron gas riG. 5. The density deviations in the minimum point of the MG
with f[he same densijyit is_related to the exch_ange energy of (cf. Fig. 2, [n,(0)/n,—1]/(xp?). The quantity is constructed to
a uniform electron gas with the same chemical potential.  iye the first Taylor coefficient in an expansion of the MG density

With a curvature on the potential not only the exchange, the parametek p?, when approaching the limkp?=0 [cf. Eq.

energy per particle but also the density and the Laplaciat&,}ll)].
deviate from the uniform electron gas values. To lowest ory

The line dividing the HO and FE domains in the parameter
pace is also shown. An oscillatory behavior that is connected to the

der energy-band structure is visible in the HO doméih Fig. 6).
Nm(0) = nu(l+al)\—p2), (34 Fr_om the_ data in_the FE-like do_main the expansion of Eq.
4.(0) =a2)\—pz, (35 (34) is confirmed witha; = —1/2 (Fig. 7).
ei?(nq(o)z ei{ﬂ‘(l%—ag)\—pz), (36 Obtaining & in the HO model

irxh

wheren, ande,’, are given in Eqs(32) and(33). From Eqg.

(8) it then follows that

The independent HO expressiofEgs. (25), (26), and
Appendix d are used to compare the behavior of the HO
model with the behavior in the HO-like domain of the MG.

The MG model should approach the HO model whdp?

birxh:a:*'__alBl (37) —oo, because the effective potential approaches a harmonic
a
The prefactors;,a,, andaz remain to be determined. Siititins 0 YA D)
B. Determination of the coefficient of density deviationa, 05
We first examine the quantity
[N(0)/ny—1] AP*-0 "
n,(0)/n,—1] *—
il )\_2“ a;. (38)
p 0 03
Figure 5 shows this density deviation of the MG, at the mini- 5
mum point, from a uniform electron gas with the same 0.2
chemical potential scaled with the curvature. In Fig. 6 the
same data are shown as a contour plot with the energy-band 0.1
structure in Fig. 3 superimposed. A dependence of the den-

sity deviation on the energy-band structure is evident.
A dramatic change happens in the behavior along the line
where the chemical potential is at the potential maximum,

A=1/2, that'is, at the line dividing the HO-like and the FE- £ 6. The density deviations of the MG superimposed by the
like domains. This change occurs where the chemical potensnergy-band structure. The lighter contour lines are the same quan-
tial rises above the most distinct discrete energy level anglty as shown in Fig. 5. The darker contour lines reproduce the band
enters a more continuous energy-band structure, once agaddges in the MG energy-band structure, as shown in Fig. 3. A de-
illustrating the importance of the energy-band structure fopendence of the density deviations on the energy structure is
the properties of the system. evident.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6
1/ a 1/ a

FIG. 7. Density deviations vs &/for the curves through the FIG. 8. The black line is the density deviation for the HO model
parameter space of the MG with constatp?=0.2, 0.4, 0.8, 20,  Of a system with a low temperatukg T=0.05«. The light line is
40, and 100shown in legends corresponding to the long-dashed the density deviation for the HO model k§T=0. In the slowly
lines in Fig. 3. The lighter lines with/p2=0.2, 0.4, and 0.8 show Varying limit we find a,=—0.5 at nonzero temperature, which
density deviations in the maximum point 7/p, while the other ~adrees with the value extracted in Fig. 7.
curves show the density deviations in the minimum pa#n0. The
light oscillatory curve shows the density deviations for the HOwhich is inserted into Eq(39). Using the explicit expression
model, corresponding to the limk/p®—c. The parameter is  for a for the HO, Eq(30), and keepingy, constant, a Taylor

related to the energy-band structure and is defined iZ9). The : : NP -
L o ) xpansion ofny, in 2 [\ fficient for the term
slowly varying limit is approached asd+/-0. In that limit we find expansion ol Ap® gives as coefficient for the te

; 2
a;=—0.5[cf. Eq. (38)]. proportional to\ p?,

oscillator potential. Furthermore, in this limit, the MG en-
ergy spectrum approach the energy spectrum of the HO sys-
tem. Hence the MG density in the HO-like limit should ap-
proach the pure HO density. This is confirmed in Fig. 7.
However, using the limiting procedure in E(8), conver- o o .
gence to a single value &, is not obtained. The conver- This is a parametrization, ia., of the range of possible
gence is prevented by heavy oscillations, a situation similaimiting values ofa;.

5
aj(ag)=— E+6ae—3a§. (41)

to sin(1k) in the limit x—0, with a range of limiting values. ~ Averaginga,(a.) over O<a.<2 gives —1/2, i.e,, the
The sum in the expression for the density, E4l1), can Same value of; as extracted from the FE domain of the
be evaluated explicitly at=0, yielding MG. Oscillations in the HO model are thus superimposed on
a curve converging to the same value af as in the FE
N(0) = ny/m(V2\p?) 32 domain. N _
When a low temperature is introduced by adding the usual
(3/\/27\_pz—4Ne+ 1)Ng (2Np)! temperature factof$into the KS-orbital system and numeri-
X (39 cally recalculating the density,; converges to-1/2, as is

N 2"
ave (Nel) seen in Fig. 8. This motivates taking averages avgein the
N, is the number of discrete energy levels with even index zero-temperature HO model, or equivalently, averaging over
and energye,<u. Examining Fig. 7, a periodic behavior the position of the chemical potential in the energy-band
with Aa=2 is seen, where maxima and minima of the os-Structure, as a way of extracting information valid in more
cillations in the density coincide with integer values @f  realistic cases. _ _
indicating a strong relationship between the oscillations and To summarize, the density of the MG model behaves dif-
the energy-band structure. The limip?—0 is therefore ferently in the FE-like and HO-like regions of the parameter

taken separately for each point with a fixed relative positiorsPac€: In the first region the chemical potential is in a FE-
to two consecutive evem. By defining a number € a, ike energy structure. The density is well behaved, and con-

<2 as the smallest number fo subtract franto obtain an ~ YE'9€s toa; = —1/2. In the second region the chemical po-
even integefi.e., a, is the distance inx from the chemical tential is In a HO.-I|ke d|scretg—d|n)en3|on energy structure,
potential, x«, to the highest even energy levelu), N, can The density oscillates heavily with the system parameters.
be expressed as Curves with\/p? constant, starting from the HO-like region
and approaching the slowly varying limiby going in the
N.— C“_O‘eﬂ (40) limit Ap>—0) eventually reach the FE-like region where the
€ ' oscillations damp out. In the case of the pure HO system,
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or 1 _4c, (5/N2Ap?—12Ny—3)(2N2+N,) (2N,)!
an(0)==5 AN (No1)?

8¢y (5/V2Np?—12Ng—1)(NZ—Ne) (2N,)!
15 4Ne (Ng!)?

2¢q (31N2Np2—4Ng+1)N, (2N,)!
3 4Ne (NeH)?’

5/3
cq=( n ) 3 (V2rp?)52. (44)

nh(O) 4

0 o1 02 03 04 05 06 N, is the number of discrete energy levels with even index
1o and N, is the number of discrete energy levels with odd
indexm, such that their energies, and e;,< w.
In analogy to«, above, we introduce a parameter O
<a,<2 as the smallest number that gives an odd integer
when it is subtracted frorx. We get

(43

FIG. 9. Laplacian deviationg/(Ap?) vs 1l for the same pa-
rameters as in Fig. 7. In the slowly varying limit we fira
=—1.5[cf. Eq. (42)].

however, the chemical potential is stuck between the endless a—a, 1
number of purely discrete energy levels, leaving the oscilla- No= 2 + PR (45)
tions undamped.

The oscillations present in the HO modahd throughout ~ The relation between, and«. is ({x} denotes the decimal
the HO-like domain of the M@are a technical issue at zero part of x)
temperature and uninteresting when drawing conclusions
about more realistic systems. When introducing a tempera-
ture into the HO model, or, equivalently, averaging over the
position of the chemical potential, the limiting value af
= —1/2 is recovered. Note that no artificial finite size is im-
posed in our calculations, like using periodic boundary con-
ditions or hard walls. The oscillations emerge naturally fromand thus is only valid in the pure HO model.
the discrete energy levels in the HO limit and are present YS sing No(a) andNe(ae) and keepingre and e, con-
also in the non-numerical treatments. Hence, when usingtant, a Taylor expansion of E@3) in \/2>\D gives the
such a simplistic model as the HO to test proposed gradierdoefficient for the term proportional top? as
expansions or for fitting of parameters, some method similar
to our a averages or temperature additions must be used to ay(ae)=—3(1—|a.— 1), (47
guench the oscillations and obtain results valid for general
systems.

ast1l
2

(46)

An=

Thus, if a, is constanta, must also be constant. This rela-
tion is based on the equal spacing of the HO energy levels

where we have eliminated, by observing thai, and «,
fulfill 1 +(1— ay)%—(1— ae)2 2(1—|ae—1]) in the inter-
val of their definition. Averaginga,(«a,) over 0<a <2
gives —3/2, i.e., the same as the valueaf in the FE-like

C. Determination of the coefficient of Laplacian deviation,a, .
domain of the MG.

Next, we examine

D. Divergence of the coefficient of exchange energy
per particle deviation, a;

)\p *}O
Qm(g) — s ay, (42) When examining
Ap
eerh(O)/ |rxh -1 )\p N
[ ] as, (48)
where a,=—3/2 in the FE-like part of parameter space )\p
(Fig. 9. as in Fig. 10, no convergence to a valag in the limit

Ap?—0 is observed. This indicates thaf"(0) does not

have an analytical expansion ip?, as was assumed in Eq.

In the HO model, the Laplacian of the density has an(36). In Fig. 10 the same expression but with the LDA ex-
oscillatory behavior similar to that of the density, as seen irchange energy per particle is also shown. As expected the
Fig. 9. Forz=0, the Laplacian, Eq.11), for the HO model LDA limiting value is a,/3=—1/6, which is obtained by
becomes inserting Eq.(34) into Eq. (8).

Obtaining &, in the HO model
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Wo% 2l || M 220 Since the limiting procedure of low curvature at the maxi-
0.8y A - e mum point is appropriate only for chemical potentials
0.5t -~ 08 | = 40 >2\, orA<1/2, data outside the FE-like part of the param-
04l eter space of the MG are not investigatédy. 3).
?% The three quantities to consider thus are

0.31
o B2 N(2=7/p)/[Ny(V1=2))%] -1 9
;({Jx 0.1 _)\—pz(l_zr)_z )
& o

_ z=ml

o InzZmP) (50)

-0.2 —Ap(1—2N)"

-0.3 . | 1 1 1 ! 7

0 0.1 0.2 0.3 0.4 0.5 06 irxhe ixh 1 _ oy —
o €xm(Z w@/(ex'u _\/1 2\) 1' (51
—Ap%(1—2)\)72

FIG. 10. Deviations from the uniform electron gas exchange

energy per particle,"/ '~ 1)/(xp?), for the same parameters | Figs. 7, 9, and 10 the data for the maximum points are
as in Figs. 7 and 9. In the slowly varying limit this expression is grawn as light lines. No major differences are seen between
expected to approach tra coefficient in Eq.(48), but all ixh garyer and lighter lines, confirming the symmetry between
curves are dlvergln_g and no value can be extracted. For comparisoiy <ivive and negative curvature in the density and the La-
the same expression for the LDA exchange energy per part'd%lt;cian, and implying this symmetry for the inverse radius of
(™€ —1)/(\p?) for A/p?=0.8, is shown. the exchange hole definition of the exchange energy per par-

ticle, Egs.(4)—(7), at low curvature.
ag in the HO model as.(49—(7)

In the HO mo_del,_ not only the characteristic energy struc- V. COMMENTS ON NUMERICAL RESULTS
ture related oscillations are present but also the divergence ‘
seen in the FE-like domain of the M ig. 10. Since both Since we only have numerical proof that" is not well

the maxima and the minima diverge in thp2—0 limit, the defined, indicating nonanalyticity of the exchange energy per
averaging technique used previously would not cure the diParticle of Eqs(4)—(7), the accuracy of our results needs to
vergence. Nor will the behavior be canceled by the otheP® considered. As seen in Fig. 10, LDA has converged well

coefficients when composinig™™ according to Eq(37). before the irxh curves are in doubt numerically, which is one
The divergence of thas coefficient does not imply that indication that the divergence of the irxh curves is not due to

6%? itself diverges. In facte™ converges to the FE-limit of numerical errors. We base an estimate of the accuracy of our

X

Eq. (33) in both the MG and the pure HO. This indicates thatgalculations in ;[he FE-like dor;:airr: of Itlhg MG oln ancijndepﬁn-

irxh ; i ; ; - . ent numerical inspection which will be explained in this
" s not analytical at all points, Whlcrme wil dISCU_SiIn 2 section. The estimaF')ced errors are presentedpin Table I.
later section. The divergence in the limip®—0 with A/p Not only the prefactor 10/81 in Eq9) is known but also
constant, seerms to be of logarithmic kifither than, for  , efactors for higher-order term&While remembering that
example,x” with y being a fractional numbgrit could be  {hese factors are valid only as an expansion of the exchange
possible to create a local expansion of such a nonanalyticlhergy itself, that is, for the expansion integrated together
function, but not as a regular power expansion as(E4. A yjth the density according to E42), we use this as an in-

suitable expansion needs one or more nonanalytical terMgspendent check of the accuracy of our numerical calcula-
that tend to zero in the slowly varying limit, likelog|q|. tions of the exchange energy per particle.

The fourth-order expansion is according to Svendsen and

E. Analyzing data at the maximum of the potential von Barth(SvB),
The fact that the gradient term in the expansion in Eq.
(14) is zero at the minimum of the potentialzt 0 was used €SVB— (LDA[ 1 4 E)ser quz_ 7—332q+054
above, thus giving direct access to the valudBf. This is X X 81 2025 405 '
also the case at the maximum of the potentiakatm/p, (52
which allows us to analyze the results in terms of negativ

eI'he higher-order prefactors 73/405 and O are not exact but
We must, hovieter, compare wih the correct uniorm(7® POSSIE eOre I hese prefactos does not fuence he
electron gas, having a chemical potentj@l,.,= u—2\. q y

. the MG. For values in the HO-like domais,andq can be
Thus ke, in Egs. (32) and (33) should be replaced by very large and a comparison with the SvB expression is not

(Ke w)max= K V12X, and the negative dimensionless cur- adequate.

vature must be rescaled according ®pf)ma=—Ap2(1 In Fig. 11 €' €P* and €™/ €LPA are compared over a
—2\) 2 half period in the spatial coordinate for one representative set

curvature.
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TABLE I. Error estimates for selected points in Fig. 10. The right part of the table refers to Fig. 3 for the

location of the point in the parameter space and to Fig. 11 for the error estimates. The differeateeen

the value ofe™/e:°* in z=0 andzp= /2 is included in the table as a measure of the scale ory thés

in Fig. 11. By addingﬁ(ei[Xh/e;DA) to the calculated data, the same total exchange energy is obtained as with
the SvB expansion, Ed52); see Sec. V and Fig. 11. This corresponds to additd"/ ™™ /\p? to the

X,u
points in Fig. 10. The third column shows errors for points on the data curves for minima, while the fourth

column shows errors for points on the data curves for the maxima.

éth(O) e;th(_ é’rxh
B e ey v 1%)
)\/p2 1/a €xu (fx,u max p A €y
0.2 0.596 —0.0002 0.0002 0.553 —2.179x 103 —4x1078
0.2  0.089 —0.0116 0.0115 0.089  8.8%10°° —1.45x10°7
0.8  0.582 0.0007 —0.0003 0.494 —8.035x10 2 3.5%X10°°
0.8  0.097 —0.0012 0.0012 0.096  4.68210°° —-8x10°8
0.8  0.062 0.0113 —0.0112 0.062 10.35610 ° 1.35x10°7
20 0.075 0.0007 N/A 0.071  5.0%110° 4 3x1077
20 0.044 0.0024 N/A 0.043  7.656l0°° 1.6x10°7
100 0.080 0.0155 N/A 0.061 5.2620° 2.2x10°°

of values ofA andp. It is obvious that these two quantities This implies that the value of the total exchange energy
can only be compared via the integrated values according tBased on the SvB expansion in E§2) can be considered an
the exchange part of EqR). exact reference value as long @andq are small.(ii) Sta-

The errors in our data points are estimated by Comparingstical errors, due to limited internal numerical preCiSion in
the different integrated values, making the following as-the computer, are negligible compared with systematic er-
sumptionsi(i) The numerical errors in the calculation of the rors. This is based on the smoothness of the curve joining
density are neg|igib|e, Compared with the errors made in théonsecutive pOintS in Flg 11. If there was a statistical error,
calculation of the exchange energy per particle, since théhe points would be scattered in a band of a width corre-
density calculation is much less compleompare Eqs(B2) ~ sponding to the statistical errdiii) The systematic error is
and(BS)] The density is also well behaved as seen in F|g 7the same over the entire interval shown in Flg 11. We have

found no reason why the systematic error should have a de-

/e PA — 1 pendence on position. The full line in Fig. 11 was created by
adding a uniform systematic error to th&"/ k" curve
chosen to make this curve give the same value of the total
exchange energy as obtained from 3% e-"* curve.

As a further indication that the discovered behavior is
correct we note that the two model systems, the MG and the
HO, have been treated separatédge Appendixes B and)C
and the divergence is present in both models.

4x107°

irxh + correction
2x107°

-2x107¢
VI. DISCUSSION AND CONCLUSIONS
—6
410 In the first part of this work we discussed a way, via
subsystem functionals, of extending the successful use of
FIG. 11. Exchange functionals based on different sets of defini-DFT tO, more complex systems than are_ addressed today. The
tions can only be compared via the total exchange energy given b§asic idea of subsystem functionals is to apply different
the exchange part of ER). This is evident in the figure where the functionals to different parts of a system. This puts the addi-
SvB exchange energy per particle from Eﬁz) is shown together t|0nal COﬂStI’aInt on the funCtIOhEﬂS that they a” mUSt adhere
with the irxh exchange energy per particle in E@—(7) over a  t0 a single explicit choice of the exchange-correlation energy
half period in the spatial coordinate fot/ﬁ=0.0049 andp  Per partlcle. A limited subsystemlike scheme has already
=0.0621. In order to obtain the same total exchange energy frof?€€N implemented and tested. . N
the SvB and the irxh exchange energy per particle a uniform cor- 10 make the scheme of subsystem functionals competitive
rection of 1.35¢ 1077 is needed for the irxh. This is shown with the With current multipurpose functionals, a subsystem func-
full line. The exchange energy obtained from the SvB expansion idional more accurate than LDA for the slowly varying inte-
Eq. (52) can be considered exact because of the small parametefor part of a system is needed. We address the derivation of
used in this work. such a functional in the second part of this work by examin-
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0.1 ' ' : ' ' ' whether the difficulties found were caused by problems with
| oooEEIEEE the exchange energy per particle or due to other is&ueh
o —‘;,_‘:.ZC ‘‘‘‘‘ i as in which order the limits have been takdn contrast, our
- results show how the unscreened, zero-temperature expres-
sions themselves raise difficulties.

We suspect the long Coulomb tails to be responsible for
the nonanalytic behavior of the exchange energy per particle.
The nonanalyticity should disappear if screening is intro-
duced. This can be done by using a Yukawa potential in
place of the Coulomb potential in E¢5). Another way of
taking the screening into account is to perform a full

random-phase approximatigRPA) calculation.
- 100 In conclusion, we have found that for the creation of an
. i HO expansion for subsystem functionals of the exchange energy
0 0.1 0.2 0.3 0.4 0.5 06 per particle in the density variation, i.e., to go beyond the
Vo LDA exchange in a subsystem, there are two options. Either

FIG. 12. The quantity ""/e®A—1)/q vs 1k for the same the nonanalytical function of the dimensionless Laplacian
parameters as in Figs. 7, 9, and 10, summarizing the data present8tst be found and included in a density functional based on
in these plots. In the limit of slowly varying densitiesa40, this  the irxh exchange energy per particle, EGH—(7), or an
quantity is expected to approach the Laplacian coefficient of thelternative definition of the exchange energy per particle
conventional(irxh) exchange energy per particle™, but the di- must be chosen. Alternative definitions have been
vergence found in Fig. 10 prevents convergence and thus no suguggestetf and we plan to continue our investigation by
coefficient exist. We thus conclude, in Sec. VI, that the irxh ex-examining if any of these can give an exchange energy per
change energy per particle can not be expanded in the density varigarticle that can be expanded in a Taylor series. Note, how-
tion as suggested in E¢L4), which indicates that it is not a good ever, that mostif not all) of the exact conditions that are
choice when deriving subsystem functionals, which need to adhergsed when constructing an exchange functional in the tradi-
to an explicit choice used throughout the whole system. tional way are based on the definition in E¢#—(7). New
similar conditions need to be constructed if another defini-
tion is used. Some such conditions on alternative definitions
fhave already been derivé¥As a final remark we note that

e origin of the division of the exchange-correlation energy
nto an exchange and a correlation part is based on the
Hartree-Fock method that treats exchange only. In DFT this
bgivision is artificial. An alternative way to proceed could be
to either divide the exchange-correlation energy in another

Rp?; z=n/p

ing the conventional definition of the exchange energy pe

expansion of this exchange energy per particle in the densit}

variation must contain a nonanalytical function of the dimen-

sionless Laplaciariif such an expansion exists at)alOur

numerical results, presented in Figs. 7, 9, and 10, can

summarized as in Fig. 12. L
Any attempt to model the exchange energy per particldV@ ©r to not divide it at all.

defined by Eqgs(4)—(7) with an analytical expression will be

futile, in the sense that it will be unable to reproduce the

nonanalytic behavior found in the slowly varying limit of the ACKNOWLEDGMENTS
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HO and the extended system of the weakly perturbed peri-

odic potential, two very dissimilar systems. A functional

based on the results fo_r the MG can potentially become 8,ppeENDIX A: GENERAL COMPUTATIONAL FORMULAS

true multipurpose functional useful for atoms, molecules,

and bulk systems. The density and the inverse radius of the exchange hole,
Nonanalytical behavior and improper coefficients havedefined in Egs(1) and (5) respectively, are computed ac-

appeared in previous wotkregarding the same exchange cording to the formulas in Ref. 6 where tkeandy dimen-

energy per particle, but only in such a way that it is unknownsions in both real and reciprocal space are integrated out. For
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completeness these formulas are restated here, in a more gai-the tail integral. The approximation is created by compos-

eral form, ing a new integrand from the asymptotic behaviors of the
integrated functions,
) m
N@=22 lo,lw,, w,=_—s(u=e,) (A1 e 5 -
K Jy(rt) —— —\/——cog rt—3—], (A7)
and rt 4
. e? 1 1 == 1
irxhe oy ’ LA, - -—, A8
ex (1) 27rn(z)J dz 277 ; en(2)ey(2)¢,(2) ty1+t2 t? 2t (A8)
><(pn,(z’)(Az)*3g(k7]Az,kn,Az), (A2) but leaving out the cosine as it only superimposes oscilla-
tions and is<s1. When integrating this expression fragito
© Jy(rt)Jo(r't) infinity it gives an approximation of the tail integral, which is
g(r,r’)=rr ’f ——dt (A3)  solved fort, to give a value for where to end the integration
0 tyl+t overt:
wherek,=[2m(u—€,)/4%]¥% Az=|z—2'|; and the sums
in Egs.(Al) and(A2) should be taken over af} of occupied fom 1 A9
orbitals in the zero-temperature ground state. 0_(4776 frr)* (A9)
Calculation of g(r,r’) Details on the method used for the numerical integration are
, , found in Appendix B4.
To calculate numerical values @f(r,r’) a method for The speed of the calculation is increased with a lookup

calcu_latmg Besgel fgnctlonsll(x) IS needed. We_ use the iaple for g(r,r"). Bicubic interpolation is used, with three
algorithm descr!bed in R(_—:-f. 30, as .|mplemented in Ref. 31 illion lookup points for values of andr’ ranging from 0
but extended with coefficients for higher accuracy. 41500, The points are distributed with a nonlinear transfor-
Theg(r,r’) function has a long oscillating tail, which is 440 to increase accuracy for very smatl’ and wherr is
handled by separating it into two terms: almost equal to’. There is a limiting expression fg(r,r’)
for large values of andr’<r that could have been useful

g(r,t’) - foc Jl(rt)til(r’t) dt+ ijl(rt)Jl(rrt) for the construction of the lookup table:
re 0 0
1 1 ( ');% ! 1) 2 (A10)
r,r S——|r'%
X ——) (A4) g 2 ar
tyt+1  t?

_ _ o _ but this expression has a relative error of as large a$ 20
The first part can be integrated for-r’, giving [with K(z)  the highest values of needed in our calculatioabout
and E(z) as the complete elliptic integrals of the first and 1000). Since the calculations required a higher precision the

second kind"] expression is not used.
f°° Ji(rI(r'Y) APPENDIX B:
0 t? COMPUTATIONAL FORMULAS FOR THE MG
12 2 There is a simple relation between the form of Mathieu
=——|(r*+r'?)E — —(r’=r'?K — functions used here, the,(z) of Eq. (18), and the real even
3r'm r r and odd forms of the Mathieu functioA$ce andse which
(A5)  are commonly found in numerical software. Although we
. o, computeF, (z) directly, this relationship is useful for making
The special case=r" gives independent verifications:
= J2(rt) ar — _
—dt=—. A6 _ 1a),. 1A
JO t2 37 (AB) Fn(z)—cen(z,—E? +|se7]<z,—§? . (BD

The complete elliptic integrals are calculated using the ) )
implementations of Ref. 31, modified for higher accuracy. !tWwas shown in Sec. lll Athay enumerates the solutions
Numerical integration is still needed for the second integraPf different energies, giving a rudimentary band structure.
in Eq. (A4), but the oscillations of this integrand decay muchWhen L of Eq. (18) approaches infinityy can take any
faster than the oscillations in the original integrand, andvalue from—# to 7, where 5 is the positive number enu-
hence are easier to handle. merating the state with largest energy< u. The energy,
The infinite interval of integration is treated by introduc- is a continuous function ofy except at integers, and can be
ing an error bound and setting it equal to an approximation integrated numerically if formulas that exclude the discon-
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tinuous points are used. Besides the practical issues, the dis- 2. Integrations over the Mathieu index n

continuities ofe, have no influence on the values of the One solution to the Mathieu matrix equations produces

integrals, as they only occur at a finite number of single, 51 es for all Mathieu functions withy=even number

points. o +|¢|. Because of this, but also as a way to handle the dis-
The KS orbitals in Eq(18) can be used to express the o ities ofe, when 7 is integer, the integrations over

density and the irxh exchange energy per particle as are parted ugusingZ as the reduced index of):

~ - A B
-3 (7 — € 7 1<l . .
nm(z):nupifO”|Fn(pz)|2(1—;”)dn, @ [ tenan- (ZO (20 +3, f(2|—z>)d§
1 C D
i . +f~ DORICEIIEDS f(2i—g)>dg.
. N A 7\ =0 =1
eerh(Z)=6erh2p2 u_ dz/f”dnfﬂdﬂ/
x,m x,u n(2)) = 0 0 (B5)
X ReF ,(p2)F%(pz') IREF7, (p2)F , (p2')] For a giveny, values forA, B, C, andD must be carefully
o o chosen to make the right-hand expression constitute the
X (Az)3g(k,Az,k;A2), (B3)  whole interval 0 to7. Details on the method used for the
numerical integration are found in Sec. B4.
Ky=V1-e€,/u, (B4) 3. Infinite integration over z’

The integrand ovez’ in Eq. (B3) is the expression for the
i exchange hole divided by a positive distance and thus always
=F5(2). , ) i has the same sign. Furthermore, the doubly infinite integra-
Important issues with the computation of these formulas[ion over allz’ is split atz, transformed and re-added into

will be treated in the subsections below. . . P L X
one integration from 0 to infinity, giving slightly more com-
plicated arguments in the Mathieu functions.
1. Mathieu functions To handle the infinite interval of integration it is possible

. . . . to extract a limiting behavior for the' integral for the uni-
The algorithm for computing Mathieu functions presentedftorm electron gadthe same cannot be done for the MG

here has similarities with the one presented in Ref. 32, but” ) S ; .
the code was developed by us. In Sec. Il A a Fourier exdiving a result proportional to 2/*. This result, and numeri-
panded Floguet solution was inserted into the Mathieu difc@l experiments throughout the parameter space of the MG,
ferential equation, giving a matrix eigenvalue equation deindicate that this is an upper limit on how slowly the oscil-
scribing the solutions, Eq(19). To solve this equation lations in the integrand can decay. In the HO-like area of the
numerically the matrix must be truncated at some finite sizd¥G the oscillations die out much more quickly. When ap-
2K+1. We based the choice df for a given 7 on the Proaching the FE limit the decay of the oscillations ap-
numerical testing performed in Ref. 32. The eigenvalue probProaches the resuit found for the uniform electron gas. Based
lem is solved by regular numerical methods, using the algo®" this, our method to handle treintegration is to fit a
rithms from Ref. 31(We are aware that these implementa-function of the form const’* to the behavior of the last part
tions are not as efficient and optimized as more specializedf the integrand. As the integrand decays like this fitted func-
routines) tion or more quickly, and has a constant sign, two approxi-

The index can be parted into a sum of two terms, anmate values of the total integral appear. The first has the
even integer and a reduced inded </<1, as discussed in additional constZ’3 tail added, and the second totally disre-
Sec. Ill A. Solutions with the samg but with different even  gards any tail contributions. These two values for the integral
integer parts, show up as solutions with different eigenvalueare approximations of an upper and lower bound on the real
a(n,M(2p%) to the same matrix problem. Solutions for value of the integral. The integration of ti# integral is
negative » are obtained from the relabeling},—c”,, . halted when these upper and lower bounds are closer than the
Hence one single solution of the matrix eigenvalue problenaccuracy goal set for the integration.
produces values for ath=even number- |{].

The routines for the Mathieu functions are also used to 4. Method of numerical integration

determine from a known chemical potential using the An integration algorithm suitable for parallel computers is

bisection method. Guesses#fare refined until an energy as needed, as the multiple levels of integration in the expres-
close tou as possible is obtained. There are more efficienkjons are very time consuming for certain choices of param-
ways of determiningy from w, but since this is only done eters. There are many nonparallel integration routines avail-
once per computed data point, the time lost by using bisecable, such as theuabprack (Ref. 33 routine “dgag.” The
tion is negligible. “dgag” routine is intended for integration of oscillatory in-

where Az=|z—2'|=keAz, and we have used_,(2)
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tegrands, like those encountered in this work. It handles themuantities should be stored intermixed in one array to ensure
adaptively in the sense that it spends most of the time on thgood use of the cache memory of the computer.
difficult parts of the integrand. For parallel computers there The integration is performed by iteration, reducingn
are only a few commonly available similar adaptive integra-each step, until the relative difference between the results
tion routines, as distributing an equal load to each computeirom two consecutive steps is less than some error beund
node is difficult. A major benefit inherited from the trapezoid integration is
However, for the integrations encountered in this work thethat if h is reduced with a factor of 2 in each step, the pre-
gain of a proper adaptive integration method is limited, asvious computed approximation for the next iteration can be
the integrands usually are smooth but heavily oscillatingreused. This halves the number of function evaluations
with a frequency not varying much throughout the interval ofneeded.
integration. This motivates the choice of a more basic algo- Despite the fact that EqB9) formally does not include
rithm refining the entire interval of integration at once, whichthe end points of the intervdl.e., it is formally open, the
makes a parallel implementation easier. The algorithm prenature of the functiorw(x) brings x; andx,_, extremely
sented here has been developed by us and used in most of ttiese to 0 and 1i.e., for practical purposes the formula is to
calculations. be regarded as closgdn case the end points of the interval
As all finite ranges can be substituted into the range frommust be avoided, the interval of integration can be shrunk
0 to 1, only this case will be treated. Ordinary integral sub-minimally and open trapezoid integration used on these
stitution using a functionx=w(x"), fulfiling w(0)=0 and  small parts.
w(1l)=1, gives For the integrals in this work the described integration
. ) algorithm shows both a rapid convergence and a very stable
_ , behavior. In tricky situations, where the integrand is not en-
fo Fx)dx= fo FwOW! (x)dx. (B6) tirely smooth, the algorithm results in a trapezoid integration
of a nonperiodic function, and thus converggdthough
We seek an explicit expression for(x) whose right deriva-  sjowly). However, for the cases where the integrand is well
tives, to any order, equals zero ®s>+0, and whose left pehaved and smoottas it should bg the convergence is
derivatives, to any order, equals zeroxat:1. A function  much more rapid, imitating the behavior seen with usual
fulfilling these requirements is trapezoid integration of whole periods of periodic functions.
§ For the nonparallel case the results and speed of the de-
W(X):f Cefl/(sz)dz, W/(X):Cefl/(xfxz), (B7) scribed integration method for integrals relevant for this

0 work were compared with theuapPAack (Ref. 33 routine
“dgag.” That routine seems to be significantly slower, re-
[t —1z-) -1 quiring on the average more evaluations of the integrand.
c . e dz (B8)
APPENDIX C:
wherec is chosen to meet the requirememfl)=1. COMPUTATIONAL FORMULAS FOR THE HO

The integration of the combinatiof(w(x))w’(x) can ) o
now be seen as an integration of one period of a periodic The HO formulas obtained by combining Ed&6) and
function, as the function values and all derivatives match atA1)—(A3) look roughly similar to the MG formulas but are
Xx—+0 andx—1. For such integrands ordinary trapezoid computable with less elaborate r_1umer|c_al methods. The KS
integration converges very rapidly, since error terms cancePrbitals are enumerated by the discrete index of the Hermite
The argument assumes thigiv(x))w’(x) approaches zero Polynomials, making they, " sums of Egs(Al) and (A2)
in these limits, which is true unles§(x) is too diver- range from O toN—1. The number of occupied orbitals,
gent; similar assumptions are also made for the derivativets related to our input parametexs p by

of f(x).
The combination of this substitution and the trapezoid in- N 1 N 1| 1
tegration can be recast on a form similar to the one used for 22N p2 2

Gaussian quadrature formuldby also using the require-
ments lim_, , ow’(0)=0 and lim,_,;w’(1)=0, the two out-  where|x| means the highest integerx.

ermost terms have been disreganded The speed of the calculations is increased by using an
explicit expression for the Hermite polynomials i+ 0.

1 gl Furthermore, the functio )i i i
. , g(r,r') is treated as in Appendix
fo f(x)dx~h n; Unf(Xn), (B9) A, but without a lookup table, i.e., the function values are
computed directly when needed.
x,=w(hn), v,=w'(hn), (B10) All integrations in the HO model are performed by a

straightforward implementation of adaptive Gaussian inte-
whereh is a chosen step length. For each step length thgration. The reason for not using the algorithm described in
values ofv,, andx, can be pre-calculated with some other, Appendix is that the HO model calculations were finished
simple, numerical integration algorithm during the programbefore the need for a parallelized integration algorithm for
initialization. For the implementation we note that the twothe MG case was discovered. This adds to the independence
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of the two models, and makes the observation that computedls a result, the dimensionless gradienin Eq. (10), and
values for the MG model approach values for the HO modelaplacianq in Eg. (11), take the forms
an additional verification of our numerical methods.

1 |dny(2)
S= T 8 (D2)
APPENDIX D: CALCULATIONAL FORMULAS 2nm (z) dz
FOR THE GRADIENT AND LAPLACIAN
— —
The density is calculated on a fully dimensionless form. q= % dn_ﬂ() (D3)
For example, for the MG: an2¥(z) dZ
N (;) The quantities andq can thus be easily computed by taking
Fm(?): m= (D1) numerical derivatives of the routines that compute the
Ny density.
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